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A systematic numerical analysis is performed for superharmonic excitations in a
wake where a circular cylinder is rotationally oscillated in time. Emphasis is placed
on identifying the secondary and tertiary lock-on in the forced wakes. The frequency
responses are scrutinized by measuring the lift coefficient (CL). A direct numerical
simulation has been conducted to portray the unsteady dynamics of wake flows
behind a circular cylinder. The Reynolds number based on the diameter is Re = 106,
and the forcing magnitude is 0.10 6 Ωmax 6 0.40. The tertiary lock-on is observed,
where the shedding frequency (St0) is one third of the forcing frequency (Sf), i.e.
the 1/3 subharmonic lock-on. The phase shift of CL with respect to the forcing
frequency is observed. It is similar to that of the primary lock-on. However, in
the secondary superharmonic excitation, modulated oscillations are observed, i.e. the
lock-on does not exist. As Ωmax increases, St0 is gradually shifted from the natural
shedding frequency (St∗0) to lower values. The magnitudes and phases of Sf and St0
are analysed by the phase diagram. The vorticity contours are employed to examine
the vortex formation mode against the forcing conditions.

1. Introduction
Much work has been carried out on the near-wake flow structure behind a circular

cylinder subjected to controlled forcings. These studies were performed to understand
the interrelation between the near-wake flow structure and the forcing on the body.
Several different types of forcing were applied to the cylinder, and the overall wake
responses were similar: transverse oscillation (Ongoren & Rockwell 1988; Hover,
Techet & Triantafyllou 1998; Techet, Hover & Triantafyllou 1998; Blackburn &
Henderson 1999), alternate suction and blowing (Williams, Mansy & Amato 1992;
Park, Ladd & Hendricks 1994) and rotational oscillation (Tokumaru & Dimotakis
1991; Filler, Marston & Mih 1991; Baek & Sung 1998, 2000; Dennis, Nguyen &
Kocabiyik 2000), to name a few. Reviews of the controlled flows are compiled
in Bearman (1984), Griffin & Hall (1991) and Rockwell (1998). With no external
forcings, the flow exhibits self-excited oscillations, i.e. the Kármán vortices are shed
to the rear of the cylinder. In the forced wake flows, however, vortex shedding is
entrained by the cylinder motion, hence the vortex shedding frequency changes to
match the cylinder forcing frequency. This is the ‘lock-on’ phenomenon, where the
self-excited oscillation synchronizes with the forcing frequency provided that the two
frequencies are not too different.
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If the difference in the two frequencies is large enough, a quasi-periodic or chaotic
oscillation may occur (Baek & Sung 2000). However, the entrainment of frequency still
occurs when a ratio of the forcing frequency to the natural frequency of the self-excited
oscillation is in the neighbourhood of an integer or a fraction. Under this condition,
the natural frequency is entrained by a frequency which is an integer multiple or
submultiple of the forcing frequency. Such an entrainment is called ‘superharmonic’
or ‘subharmonic’ lock-on, respectively, in contrast with the aforestated harmonic
entrainment, i.e. the primary lock-on.

A considerable amount of literature concerning the primary lock-on is available
(Koopman 1967; Ongoren & Rockwell 1988; Karniadakis & Triantafyllou 1989;
Gu, Chyu & Rockwell 1994; Baek & Sung 1998; Blackburn & Henderson 1999).
However, a literature survey reveals that there are not many reports on the occurrence
of superharmonic or subharmonic lock-on. A few experimental studies have been
performed on the subharmonic lock-on (Stansby 1976; Ongoren & Rockwell 1988).
When the forcing frequency is in the vicinity of two or three times the natural
shedding frequency, the vortex shedding can be entrained at a half or a third of the
forcing frequency. These entrainments at a half or a third of the forcing frequency are
referred to as the ‘secondary’ or ‘tertiary’ lock-on, respectively. The available published
data for the existence of these entrainments have been inconclusive. Stansby (1976)
showed the existence of the secondary and tertiary lock-on region. However, the
secondary lock-on was observed in a very small range of the forcing frequency. A
numerical simulation of the superharmonic excitation was performed by El-Refaee
(1995). He found no evidence of the secondary lock-on, although the tertiary lock-on
exists.

One way to deal with these discrepancies is to re-evaluate the subharmonic lock-on
in a systematic way. The objective of the present study is to analyse the response of
wakes to the superharmonic excitation. Toward this end, a series of direct numerical
simulations are conducted. The range of forcing frequency covers up to two and
three times the natural shedding frequency. Emphasis is placed on the question
of whether the subharmonic lock-on exists in the superharmonic excitation. The
frequency response is analysed based on the phase diagram, which provides the
information about its magnitude and phase. The behaviour of the controlled near-
wakes is examined by measuring the lift coefficient (CL). The power spectral density
plots and the vorticity contours are employed to analyse the forced wakes behind a
circular cylinder. The present study represents an extension of the previous efforts
(Baek & Sung 1998, 2000), where the rotationally oscillating forcing frequency was in
the neighbourhood of the natural shedding frequency. Baek & Sung (1998) observed
the phase switching phenomena, and they classified the vortex formation patterns
in the primary lock-on region. The quasi-periodicity in the exterior region of the
primary lock-on was scrutinized by Baek & Sung (2000). It was found that, after the
shedding frequency is bifurcated at the boundary of lock-on, one frequency follows
the forcing frequency and the other gradually converges to the natural shredding
frequency.

A direct numerical simulation is made in the present study to portray the unsteady
dynamics of wake flows behind a circular cylinder. The Reynolds number based on
the diameter (D) is fixed at Re = 106, and the vortex shedding flow is assumed to be
two-dimensional (Williamson 1996). Excitation is given by the rotational oscillation
of a circular cylinder. The natural shedding frequency is St∗0 = 0.168 and the forcing
frequency (Sf) varies in the vicinity of 2St∗0 = 0.336 and 3St∗0 = 0.504. The maximum
rotation velocity (Ωmax) is in the range 0.10 6 Ωmax 6 0.40.
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2. Numerical method
The non-dimensional governing equations for unsteady incompressible flow are
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where xi is the Cartesian coordinates and ui is the velocity component. The free-
stream velocity U∞ and the cylinder diameter D are used in non-dimensionalization.
The Reynolds number is defined as Re = U∞D/ν, where ν is the kinematic viscosity.

To simulate wake flows behind a cylinder, it is useful to transform the governing
equations (2.1) and (2.2) into the generalized coordinates yi (Choi, Moin & Kim 1992).
The velocity components ui are transformed into the volume fluxes across the faces of
the cell qi. The formulation in terms of the contravariant velocity components leads
to discretized equations in conjunction with the staggered variable configuration. The
resulting pressure Poisson equation is solved, where the discretized mass conservation
is satisfied.

A fully implicit, fractional-step method composed of four-step time advancement is
used to solve the governing equations (Choi , Moin & Kim 1993). The fractional step,
or time-split method, is an approximate technique for the evolution equations based
on the decomposition of the operators. In applying this method to the Navier–Stokes
equations, we can interpret the role of pressure in the momentum equations as a
projection operator, which projects an arbitrary vector field into a divergence-free
vector. In Cartesian coordinates, these four steps are
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A second-order central difference scheme is used for the spatial derivatives and a
Crank–Nicolson method is employed in time advancement. Substitution of equations
(2.4) and (2.6) into equation (2.3) indicates that the present scheme is second-order
accurate in time. The discretized nonlinear momentum equations are solved by
using a Newton iterative method. Solving the Poisson equation for p satisfies the
continuity equation. In this computation, equations (2.3)–(2.6) are also transformed
from Cartesian coordinates to the generalized coordinate.

A flow configuration of the present rotational oscillation is shown in figure 1. A
C-mesh is used for the present simulation. This type of mesh is suitable for simulating
wake flows since higher streamwise resolution can be had in the wake region. The use
of a C-mesh simplifies the application of outflow boundary conditions. The outflow
boundaries are located at 40D and the transverse boundaries are at 50D, which
corresponds to (x, y) = (449 × 121). A uniform free-stream velocity is prescribed at
the inflow and far-field boundaries, and a convective boundary condition is specified
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Figure 1. Flow configuration of the rotational oscillation.

at the outflow boundary in order to convect the disturbances smoothly out of the
computational domain (Pauley, Moin & Reynolds 1990). On the cylinder wall, the
periodic rotational oscillation conditions are enforced.

Since the cylinder is rotated sinusoidally in time to at a forcing rotational frequency
fo, the non-dimensional cylinder rotation velocity (Ω) is expressed by

Ω = Ωmax sin (2πSft), (2.7)

where the quantities are non-dimensionalized by adopting the following relations:
t = toU∞/D and Sf = foD/U∞. Here, the superscript ‘o’ denotes the dimensional
counterpart. The maximum rotation velocity Ωmax varies from 10% to 40% of the
free-stream velocity, i.e. 0.10 6 Ωmax 6 0.40. Based on equation (2.7), the counter-
clockwise rotation occurs in the time 0 to 0.5T , and the clockwise rotation from
0.5T to T . Accordingly, the counterclockwise rotation velocity is maximum at 0.25T
and the clockwise rotation velocity is maximum at 0.75T . Here, T denotes the
non-dimensional forcing period, i.e. U∞/foD = 1/Sf .

The cylinder wake at Re = 106 has a two-dimensional periodic laminar vortex
shedding. The St∗0 − Re formulae in the range 50 6 Re 6 160, pertinent to parallel
vortex shedding, were obtained by Williamson (1989) and Fey, König & Eckelmann
(1998). The predicted value by the present simulation at Re = 106 is St∗0 = 0.168,
which is in agreement with the results of Williamson (1989) and Fey et al. (1998).
Details regarding the flow configuration, boundary conditions, grid resolution and
other numerical procedures are compiled in Baek & Sung (1998, 2000).

3. Response to the tertiary superharmonic excitation
As mentioned earlier, Stansby (1976) observed the primary and tertiary lock-on

for the cylinder vibration at Re ≈ 7000 and 9200. However, the secondary lock-on
occurred in only a very small range of the forcing frequency (Sf). El-Refaee (1995)
performed a boundary-element numerical simulation at Re = 1500 and 3000, where a
circular cylinder was rotationally oscillated. The primary and tertiary lock-on regions
were observed, whereas no evidence of the secondary lock-on was found. These two
studies corroborated the existence of the tertiary region. However, the existence of the
secondary lock-on appears to depend on the forcing conditions. In order to ascertain
these discrepancies, the tertiary lock-on is examined first in the present study, where
the forcing frequency (Sf) is set at about three times the natural shedding frequency
(St∗0).

The forcing frequency Sf = 0.504 is chosen, which is three times the natural
shedding frequency St∗0 = 0.168. Four forcing amplitudes are applied, Ωmax = 0.10,
0.20, 0.30 and 0.40. Time histories of the lift coefficient (CL) in six forcing periods
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Figure 2. Time histories of CL(θ) for the tertiary superharmonic excitation (Sf = 3St∗0 = 0.504).
(a) Ωmax = 0.10; (b) 0.20; (c) 0.30; (d) 0.40.

(0 6 Sft 6 6) are shown in figure 2 by solid lines. The dotted line represents the
rotating circumferential velocity (Ω). After a transient stage, the tertiary lock-on is
observed in all cases. The small points on the solid line denote the CL values at the
instant when the counterclockwise rotation starts, i.e. the forcing phase θ(= 2πSft) is
zero (θ = 2nπ). In figure 2, CL returns exactly to the original value after three forcing
periods. This is a manifestation of the 1/3 subharmonic lock-on. In figure 2(a, b),
CL changes monotonically from peak to peak. However, a closer inspection of
figure 2(c, d) indicates that CL increases again after a small decrease and then becomes
a maximum, i.e. two local maximum peaks are seen.

Since the tertiary superharmonic excitations are perturbed, CL can be decomposed
into the forcing frequency (Sf) and its subsequent shedding frequency ( 1

3
Sf) terms. In

the case of tertiary lock-on, CL can be expressed as

CL(t) = Af cos (2πSft− φf) + A1/3 cos (2π 1
3
Sft− 1

3
φ1/3)

= Af cos (θ − φf) + A1/3 cos ( 1
3
θ − 1

3
φ1/3), (3.1)

where Af and φf are the magnitude and the phase of the forcing frequency (Sf) term,
and A1/3 and φ1/3 are those of the shedding frequency ( 1

3
Sf) term, respectively. Note

that other frequency terms, except the dominant two frequencies (Sf and 1
3
Sf), are

negligible in tertiary lock-on.
To discriminate the lock-on and to show the behaviour of each frequency compo-

nent pertinent to the forcing phase information (θ = 2πSft), a phase diagram is con-
structed (Baek & Sung 2000). The phase diagram of CL is described by dividing CL(θ)
into two components, where the a-axis and b-axis are defined as a(θ) = CL(θ) cos θ
and b(θ) = CL(θ) sin θ, respectively. This indicates that the distance from the origin
(a = 0, b = 0) is CL(θ) and the angle with the a-axis is θ, i.e. tan θ = b(θ)/a(θ). In
figure 3, four phase diagrams for Sf = 0.504 are displayed, where the solid circle (af ,
bf) and the dotted trajectory (a1/3, b1/3) represent the Sf term and the 1

3
Sf (= St∗0)

term, respectively. The dash–dot line (a, b) is the sum of these two terms. These terms
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Figure 3. Phase diagrams of CL(θ) for the tertiary superharmonic excitation (Sf = 3St∗0 = 0.504).

——, Sf; · · ·, 1
3
Sf; − · −, sum. (a) Ωmax = 0.10; (b) 0.20; (c) 0.30; (d) 0.40.

can be expressed as

af(θ) = Af cos (2πSft− φf) cos θ = Af cos (θ − φf) cos θ, (3.2)

bf(θ) = Af cos (2πSft− φf) sin θ = Af cos (θ − φf) sin θ, (3.3)

a1/3(θ) = A1/3 cos (2π 1
3
Sft− 1

3
φ1/3) cos θ = A1/3 cos ( 1

3
θ − 1

3
φ1/3) cos θ, (3.4)

b1/3(θ) = A1/3 cos (2π 1
3
Sft− 1

3
φ1/3) sin θ = A1/3 cos ( 1

3
θ − 1

3
φ1/3) sin θ, (3.5)

a(θ) = af(θ) + a1/3(θ), (3.6)

b(θ) = bf(θ) + b1/3(θ). (3.7)

Since the trajectories (af , bf), (a1/3, b1/3) and (a, b) are a function of θ, the desired
information for each component of CL(θ) is acquired directly at each forcing phase θ.
The maximum values are designated by black dots in figure 3. Based on the relations
in equations (3.2)–(3.7), the dash–dot line (a, b) represents the instantaneous value
of CL(t) at θ. The average value of the 1

3
Sf term in equation (3.1) over three forcing

periods is zero,

A1/3 cos ( 1
3
θ− 1

3
φ1/3)+A1/3 cos ( 1

3
(θ+2π)− 1

3
φ1/3)+A1/3 cos ( 1

3
(θ+4π)− 1

3
φ1/3) = 0. (3.8)

Accordingly, the solid circle (af , bf) represents the average value of CL(t) at θ. For
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the trajectory (af , bf), a circle equation can be derived as

(af − 1
2
Af cosφf)

2
+ (bf − 1

2
Af sinφf)

2
= ( 1

2
Af)

2. (3.9)

In the above circle equation, the distance from the origin (a = 0, b = 0) to the centre
of circle ( 1

2
Af cosφf,

1
2
Af sinφf) is 1

2
Af . As seen in figure 3, the diagram of (a1/3, b1/3)

depicts a heart-shape, not a circle. In the case of lock-on, since φf and φ1/3 are locked,

the phase diagrams of Sf and 1
3
Sf are closed, i.e. the value returns to the original one.

If not locked, however, the trajectory (a, b) is not closed, but variant from cycle to
cycle.

As in figure 3, A1/3 is larger than Af . This means that the most dominant frequency

is 1
3
Sf (= St∗0). A closer inspection of the solid circles (af , bf) in figure 3 indicates that

Af increases with increasing Ωmax. However, the size of the diagram (a1/3, b1/3), i.e.
A1/3, remains nearly constant. This shows that the strength of the shedding vortex is

not increased significantly. The 1
3
Sf and Sf terms have one and three peaks over one

vortex shedding cycle, respectively, i.e. CL(θ) in equation (3.1) has one maximum for
Af = 0 and three for A1/3 = 0. As Af increases, the aforestated combination of Af and
A1/3 gives two maximum peaks in figure 2(c, d) at Ωmax > 0.30. Since the maximum

phases (φ1/3) of the 1
3
Sf term are approximately out of phase with those (φf) of the

Sf term, CL(θ = φ1/3) is smaller than A1/3 in equation (3.1). In figure 3, φf and φ1/3

do not vary significantly. For Ωmax = 0.30, the values of φf and φ1/3 are φf = 0.11π
and φ1/3 = 1.22π, respectively. The phases of the positive maximum are 0.59π and
1.77π. It is recalled that the rotational oscillation is defined as Ω = Ωmax sin (2πSft).
The counterclockwise rotation occurs in the time 0 to 0.5T (θ = π), and the clockwise
rotation from 0.5T to T (θ = 2π). The positive maxima of instantaneous CL occur
when the clockwise and counterclockwise rotation velocities decrease. However, the
positive maximum phase of average CL is obtained when the counterclockwise rotation
velocity increases. The phases of the negative maximum are opposite to those of the
positive maximum.

Next, the forcing frequencies in the vicinity of 3St∗0 = 0.504 are considered in
figure 4. An examination of the lock-on range indicated that the tertiary lock-on
occurs in the range 0.502 6 Sf 6 0.506 at Ωmax = 0.10 and 0.500 6 Sf 6 0.508 at
Ωmax = 0.30. The increment of Sf for the lock-on test was 0.002. As Ωmax increases,
the tertiary lock-on range widens. This is similar to the case of the primary lock-on.
The time histories of CL in the tertiary lock-on are displayed in figure 4. If the forcing
magnitude is large (Ωmax = 0.30), two local maximum peaks are observed as in the
case of Sf = 0.504 (figure 4c, d). Note that the vortex shedding frequency (St0) is 1

3
Sf ,

not St∗0. As mentioned earlier, the other frequency components are negligible.
In a manner similar to the derivation of equation (3.1), the values of Af , A1/3, φf and

φ1/3 are determined by the imposed forcing magnitude and frequency. In the lock-on
range, they are invariant from cycle to cycle. The corresponding phase diagrams are
plotted in figure 5, where the same definitions of equations (3.2)–(3.7) are employed.
A detailed comparison of the trajectories (a1/3, b1/3) for several forcing frequencies
(0.502 6 Sf 6 0.506 for Ωmax = 0.10 and 0.500 6 Sf 6 0.508 for Ωmax = 0.30) indicates
that φ1/3 changes significantly over a small change of Sf . For example, as summarized
in tables 1 and 2, φ1/3 = 1.02π at Sf = 0.502, and φ1/3 = 1.34π at Sf = 0.506
for Ωmax = 0.10. For Ωmax = 0.30, φ1/3 = 1.12π at Sf = 0.500, and φ1/3 = 1.34π
at Sf = 0.508. This significant change of φ1/3 reflects the phase change of vortex
shedding relative to the cylinder motion, which is similar to that of the primary
lock-on. It is known that the phase shift in the primary lock-on is of the order of π.
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Figure 4. Time histories of CL(θ) for the tertiary superharmonic excitation (Sf ≈ 3St∗0 = 0.504).
(a) Sf = 0.502, Ωmax = 0.10; (b) 0.506, 0.10; (c) 0.500, 0.30; (d) 0.502, 0.30; (e) 0.506, 0.30; (f) 0.508,
0.30.

Sf = 0.502 Sf = 0.504 Sf = 0.506

φ1/3 1.02π 1.19π 1.34π
φf 0.11π 0.11π 0.11π

Table 1. The phase angles at Ωmax = 0.10.

Sf = 0.500 Sf = 0.502 Sf = 0.504 Sf = 0.506 Sf = 0.508

φ1/3 1.12π 1.17π 1.22π 1.28π 1.34π
φf 0.11π 0.11π 0.11π 0.11π 0.11π

Table 2. The phase angles at Ωmax = 0.30.

However, the phase shift in the tertiary lock-on is smaller than π. The phase shift rate
of φ1/3 at Ωmax = 0.10 is larger than that at Ωmax = 0.30, because the lock-on range
at Ωmax = 0.10 is smaller than that at Ωmax = 0.30. On the contrary, the maximum
phase (φf) of average CL remains nearly constant, i.e. φf = 0.11π at Sf = 0.500, and
φf = 0.11π at Sf = 0.508 for Ωmax = 0.30.

It is important to look into the vortex shedding pattern with respect to the
rotational oscillation in the tertiary lock-on. To observe the vortex formation mode,
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Figure 5. Phase diagrams of CL(θ) for the tertiary superharmonic excitation (Sf ≈ 3St∗0 = 0.504):

——, Sf; · · ·, 1
3
Sf; − · −, sum. (a) Sf = 0.502, Ωmax = 0.10; (b) 0.506, 0.10; (c) 0.500, 0.30; (d) 0.502,

0.30; (e) 0.506, 0.30; (f) 0.508, 0.30.

the vorticity contours are displayed in figure 6 at Sf = 0.504 and Ωmax = 0.30. The
snapshots are taken with the interval ∆θ = 1

4
π over the 3

2
forcing cycles. The 3

2
forcing

cycles correspond to a half of the vortex shedding cycle. The time history of CL(θ)
is also plotted on the upper left-hand side of the figure. The designated points in
CL(θ) correspond to the respective instants in the vorticity contours. In the present
study, the vorticity distributions are adopted instead of the streamline patterns. In
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excitation. (a) Tertiary lock-on. (b) Natural shedding. (c) Primary lock-on.

the streamline patterns, larger-scale vortices are clearly displayed. However, smaller
circulations are not captured by the streamlines (Lin & Rockwell 1997). Furthermore,
a single reference frame of the streamline cannot properly represent the entire vortex
system in the immediate vicinity of the cylinder surface. It is known that the vorticity
layers are separated from the shoulders of the cylinder and the separation point
moves to the base of the cylinder at sufficiently large amplitude (Sheridan et al. 1998).

In figure 6, three vortices are formed from each shoulder of the cylinder over three
forcing periods. Only one vortex among them is convected in the far downstream.
For convenience, the vortices in the upper side are termed U1, U2 and U3 in sequence.
These are generated in the clockwise sense. Similarly, the vortices in the lower side
with the counterclockwise sense are L1, L2 and L3. Once one vortex is created, a low-
pressure region emerges to balance its centrifugal force. The cylinder is then forced
to the direction where the vortex evolves. It is seen that U2 and U3 are formed at
(a)–(c) and (g)–(i) in figure 6. At this instance, CL is positive. However, L1 is formed
in the lower side at (d)–(f) between the formations of U2 and U3. It is seen that CL
is not monotonically increased. After a small decrease by L1, CL increases and then
becomes maximum, i.e. two local maximum peaks are visible. Although three vortices
are generated from each side, only one vortex (U3) is convected in the downstream
from each side. As time goes by, L1 disappears and U2 merges with U3. Note that
figure 6(m) is a mirror image of figure 6(a), in which L2 is formed at (m) like U2 at
(a). These patterns are repeated in the upper and lower regions of the wake in a π
out-of-phase fashion.

To gain a better understanding, a schematic diagram of the vortex formation
patterns in figure 6 is plotted in figure 7(a). This gives an overview of the characteristics
of vortex formation and shedding for the tertiary lock-on. The vortex strengths are
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Figure 8. Time histories of CL(θ) for the secondary superharmonic excitation (Sf = 2St∗0 = 0.336).
(a) Ωmax = 0.10; (b) 0.20; (c) 0.30; (d) 0.40.

U1 < U2 < U3 and L1 < L2 < L3, respectively. Recall that CL is positive when U2

and U3 are formed and negative when L2 and L3 are formed. The small decrease
of CL in the inset of figure 6 is caused by U1 and L1. If the forcing magnitude is
zero (Ωmax = 0), the Sf component is zero and only St∗0 exists. Since the strengths of
U1, U2, L1 and L2 are zero, the vortex shedding with only U3 and L3 is observed
in figure 7(b). However, when the forcing magnitude is sufficiently large, the tertiary
lock-on returns to the primary lock-on. The vortex strengths are then equivalent,
U1 = U2 = U3, L1 = L2 = L3. Only the Sf component exists, where the vortex pattern
is displayed in figure 7(c). Figure 7(a) is an intermediate pattern of figures 7(b) and
7(c) with different vortex strengths, which belongs to the tertiary lock-on.

4. Response to the secondary superharmonic excitation
As remarked earlier, the main purpose of the present study is to identify the

existence of the secondary lock-on. Toward this end, the forcing frequency is set to
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Figure 9. Time histories of CL(θ) for the secondary superharmonic excitation (Sf ≈ 2St∗0 = 0.336).
(a) Sf = 0.332, Ωmax = 0.10; (b) 0.332, 0.30; (c) 0.340, 0.10; (d) 0.340, 0.30.

be about two times the natural shedding frequency (St∗0=0.168), i.e. Sf = 0.336. Four
forcing amplitudes are applied, Ωmax = 0.10, 0.20, 0.30 and 0.40. Time histories of
CL are displayed in figure 8 at Sf = 0.336. As can be seen, the lock-on does not
occur, but modulated oscillations are observed. As Ωmax increases at a fixed Sf , the
modulated period decreases. On the surface, the time history of CL at Ωmax = 0.10
in figure 8(a) is seen to be locked-on. However, it is not really locked-on, but has
a very long modulated period. To examine the long modulated period pertinent to
the forcing conditions, the forcing frequencies in the vicinity of 2St∗0 are imposed, i.e.
Sf = 0.332 and Sf = 0.340 (figure 9). These are slightly below and above 2St∗0. In
these cases, modulated oscillations are clearly observed. A closer inspection of the
time history of CL in figure 9(a) reveals that the modulated period at Sf = 0.332
and Ωmax = 0.10 is shorter than that at Sf = 0.336 and Ωmax = 0.10. However,
the modulated period at Sf = 0.332 and Ωmax = 0.30 is much longer than that at
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Sf = 0.336 and Ωmax = 0.30. The time history of CL at Sf = 0.332 and Ωmax = 0.30
has a very long period, which is similar to the case at Sf = 0.336 and Ωmax = 0.10.
For Sf = 0.340, as Ωmax increases, the modulated period decreases. Moreover, the
modulated period at Sf = 0.340 and Ωmax = 0.30 in figure 9(d) is shorter than that at
Sf = 0.336 and Ωmax = 0.30 in figure 8(c). This suggests that the secondary lock-on
does not exist due to the modulated oscillations.

In order to analyse the modulated oscillations in detail, the time histories of CL
at Sf = 0.336 in figure 8 are Fourier-transformed and the results are displayed in
figure 10. The forcing frequency is clearly detected at Sf = 0.336. An inspection of
the shedding frequencies (St0) subjected to several forcing amplitudes discloses that
they are not concentrated at half of the forcing frequency, i.e. 1

2
Sf (= St∗0). The

inset indicates that, as Ωmax increases, St0 gradually moves from St∗0 to lower values.
It is important to find these shift phenomena in a sense that St0 is not half of Sf
(St0 6= 1

2
Sf). This slight discrepancy reproduces the aforestated modulated oscillations,

i.e. the secondary lock-on does not exist. The modulated oscillation frequency is
defined as 1

2
Sf − St0. As the discrepancy increases, the modulated oscillation period

decreases. Note that the present gradual shift of St0 is consistent with the experimental
results (Stansby 1976; Ongoren & Rockwell 1988; Willams, Mansy & Amato 1992).
Here, the forcing frequency of the secondary lock-on is lower than 2St∗0. In the
primary lock-on region, the forcing frequency of the sudden phase shift decreases
with increasing forcing magnitude (Stansby 1976). It is seen that St0 is dominant in
magnitude among the other respective frequencies. The power spectra in figure 10
show that small distorted frequency components exist due to the nonlinear coupling
effect.

The time history of CL of the secondary superharmonic excitation can be described
in terms of Sf and 1

2
Sf , which is similar to the tertiary superharmonic excitation in

equation (3.1),

CL(t) = Af cos (2πSft− φf) + A1/2 cos (2π 1
2
Sft− 1

2
φ1/2)

= Af cos (θ − φf) + A1/2 cos ( 1
2
θ − 1

2
φ1/2). (4.1)

Here, Af and φf are the magnitude and phase of Sf , and A1/2 and φ1/2 are those of
1
2
Sf , respectively. These values of Af , A1/2, φf and φ1/2 are determined by Sf and Ωmax.
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Figure 11. Phase diagrams of CL(θ) for Sf = 0.336 and Ωmax = 0.40. ——, Sf; · · ·, 1
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(a) Sft = 100 ∼ 102; (b) 110 ∼ 112; (c) 120 ∼ 122; (d) 140 ∼ 142.

In the case of lock-on, these are invariant. However, they are variant in the present
case of non-lock-on.

The phase diagrams of CL are displayed in a manner similar to the tertiary
superharmonic excitation in figure 11. Four time sets for two forcing periods at
Sf = 0.336 and Ωmax = 0.40 are selected in figure 11. Contrary to the tertiary lock-on,
the diagrams are variant from cycle to cycle by the modulated oscillations. The solid
trajectory (af , bf) denotes the average value over two forcing cycles,

af(θ) = 1
2
{CL(θ) + CL(θ + 2π)} cos θ ≈ Af cos (θ − φf) cos θ, (4.2)

bf(θ) = 1
2
{CL(θ) + CL(θ + 2π)} sin θ ≈ Af cos (θ − φf) sin θ. (4.3)

If A1/2 and φ1/2 in equation (4.1) are time-invariant owing to lock-on, the average of

the 1
2
Sf term in equation (4.1) over two forcing periods is zero,

A1/2 cos ( 1
2
θ − 1

2
φ1/2) + A1/2 cos ( 1

2
(θ + 2π)− 1

2
φ1/2) = 0. (4.4)

However, since it is not locked-on, the shape of (af , bf) is not a closed circle. The
dash–dot line (a, b) denotes the instantaneous CL and the dotted line (a1/2, b1/2)
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represents the difference between (af , bf) and (a, b).

a(θ) = CL(t) cos (θ), (4.5)

b(θ) = CL(t) sin (θ), (4.6)

a1/2(θ) = a(θ)− af(θ) ≈ A1/2 cos ( 1
2
θ − 1

2
φ1/2) cos θ, (4.7)

b1/2(θ) = b(θ)− bf(θ) ≈ A1/2 cos ( 1
2
θ − 1

2
φ1/2) sin θ. (4.8)

Owing to the modulated oscillations, CL does not return to the original value after
two forcing periods, i.e. CL(θ) 6= CL(θ + 4π). Accordingly, these trajectories are not
closed. The maximum points are designated by black dots in figure 11. The points on
(af , bf) indicate the values of Af and φf . The values of A1/2 and φ1/2 are expressed
by the points on (a1/2, b1/2). It is seen in figure 11 that the variations of Af , A1/2

and φf are not substantial. However, the variation of φ1/2 is significant from cycle to
cycle. It is assumed that the time variation of φ1/2 induces the aforestated modulated
oscillations.

The shedding frequency St0 in the power spectra of figure 10 can be defined by
both 1

2
Sf and the time change rate of φ1/2. An examination of figure 11 reveals that

φ1/2 changes linearly,

φ1/2 = 4π∆St t+ φ1/20
. (4.9)

Here, φ1/20
denotes the initial value of φ1/2. The substitution of equation (4.9) into

equation (4.1) gives

CL(t) = Af cos (2πSft− φf) + A1/2 cos (2π[ 1
2
Sft− ∆St]t− 1

2
φ1/20

)

= Af cos(2πSft− φf)︸ ︷︷ ︸
Sf term

+A1/2 cos (2πSt0t− 1
2
φ1/20

)︸ ︷︷ ︸
St0 term

, (4.10)

where St0 is defined as 1
2
Sf −∆St, which is close to St∗0. It is seen in figure 10 that St0

is gradually shifted to lower frequencies as Ωmax increases. In equation (4.10), Af , φf ,
A1/2, St0 and φ1/20

are constant.
In the secondary superharmonic excitation, although only one frequency component

is forced, the cylinder wake generates multiple fundamental frequency components.
This state can be called ‘quasi-periodicity’, where the state has a period of infinity
and does not close itself in the phase-plane. The Fourier transform of the periodic
state consists of delta function spikes located at integer multiples of the fundamental
frequency. The quasi-periodic state can be thought of as a mixture of periodic
motions of several different fundamental frequencies. The Fourier transform of the
quasi-periodic system consists of delta function spikes at all integer combinations
of fundamental frequencies (figure 10). Since it contains only discrete components, it
should be distinguished from a chaotic system that has a broad continuous component
distribution (Ott 1993; Baek & Sung 2000).

Taking a phase-average at every θ (= 2πSft), the St0 term in equation (4.10) goes to
zero. This is due to the fact that St0/Sf is irrational, i.e. it exhibits quasi-periodicity.
The average and the maximum of CL(θ) are then written as,

CLave(θ) = Af cos (2πSft− φf) = Af cos (θ − φf), (4.11)

CLmax(θ) = Af cos (2πSft− φf) + A1/2 = Af cos (θ − φf) + A1/2. (4.12)

The phase diagrams of CLmax(θ) for Sf = 2St∗0 are displayed in figure 12. The solid
circle (af , bf) and the dash-dot circle (a1/2, b1/2) represent the Sf term and the St0
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Figure 12. Phase diagrams of CLmax (θ) for the secondary superharmonic excitation
(Sf = 2St∗0 = 0.336). ——, Sf; − · −, St0; · · ·, sum. (a) Ωmax = 0.10; (b) 0.20; (c) 0.30; (d) 0.40.

term, respectively. The dotted line (a, b) is the sum of these two terms. They are
defined as,

af(θ) = Af cos (2πSft− φf) cos θ = Af cos (θ − φf) cos θ, (4.13)

bf(θ) = Af cos (2πSft− φf) sin θ = Af cos (θ − φf) sin θ, (4.14)

a1/2(θ) = A1/2 cos θ, (4.15)

b1/2(θ) = A1/2 sin θ. (4.16)

The phase diagram of CLave(θ) is a circle of (af , bf) itself. With these definitions, the
behaviour of CL(t) versus θ can be analysed with respect to Sf . The marked points
in the solid line indicate the maximum phases of CLave(θ) and CLmax(θ), respectively.
The maximum phase of CLmax(θ) is equal to that of CLave(θ), e.g. θf = 0.17π at
Ωmax = 0.30. This suggests that the positive maximum of CLave(θ) is obtained when
the counterclockwise velocity increases. It is known from the definition of CLmax(θ)
that all instantaneous points of a(t) and b(t) are encompassed within the dash–
dot trajectory (a, b). The dotted line (a, b) indicates the range of CL(t) at θ, e.g.
−0.245 6 CL(θ = 0) 6 0.445 and CLave(θ = 0) = 0.100 at Ωmax = 0.30. The size of
(af , bf) increases as Ωmax increases in figure 12, which is consistent with the case of
the tertiary lock-on. The sizes of (a1/2, b1/2) are nearly constant. This means that the



84 S.-J. Baek, S. B. Lee and H. J. Sung

(a) (b)

(c) (d )

0.6

0.3

0

–0.3

–0.6
0.60.30–0.3–0.6

b (õ )

0.6

0.3

0

–0.3

–0.6
0.60.30–0.3–0.6

0.6

0.3

0

–0.3

–0.6
0.60.30–0.3–0.6

b (õ )

0.6

0.3

0

–0.3

–0.6
0.60.30–0.3–0.6

a (õ ) a (õ )

Figure 13. Phase diagrams of CLmax (θ) for the secondary superharmonic excitation
(Sf ≈ 2St∗0 = 0.336). ——, Sf; − · −, St0; · · ·, sum. (a) Sf = 0.332, Ωmax = 0.10; (b) 0.332,
0.30; (c) 0.340, 0.10; (d) 0.340, 0.30.

strengths of shedding vortices are not significantly affected by Ωmax and Sf . Since the
change of φf is not substantial, the maximum phase of average CL is preserved. The
phase diagrams of CLmax(θ) at Sf = 0.332 and Sf = 0.340 are also shown in figure 13.
The behaviours of Af , A1/2 and φf are similar to those of Sf = 0.336. The values of
Af , A1/2 and φf remain nearly constant with respect to Sf . The influence of Sf is very
weak except for the modulated period.

The vorticity contours are shown in figure 14 at Sf = 0.336 and Ωmax = 0.40. Since
the secondary lock-on does not occur, the vortex formation and shedding patterns
are variant from cycle to cycle. The snapshots are taken with the interval ∆θ = 1

2
π

over two forcing periods. The designated points in CL(t) correspond to the respective
instants in the vorticity contours. Two vortices from each side are formed over two
forcing cycles, however, only one vortex is convected in the far downstream. U1, U2,
L1 and L2 are termed in a manner similar to the case in figure 6. CL increases when
U1 and U2 are formed at figure 14(a, b) and figure 14(d, e). However, L1 is formed in
the opposite lower side at figure 14(b, c), which yields a small decrease in CL(t). When
L2 is formed and shed at figure 14(f, h), the values of CL are negative. Although the
vorticity contours at figure 14(a) are seen to be similar to those at figure 14(i), these
are not exactly the same owing to the quasi-periodicity. Since St0 is lower than half
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of the forcing frequency (Sf = 0.336), the shedding period is longer than twice the
forcing frequency. A small amount of additional time is required to return to the same
value of CL. Contrary to the tertiary lock-on, the vortex shedding pattern in the upper
side is not the same as in the lower side. This is a manifestation of ‘non-lock-on’.

The non-occurrence of the secondary lock-on can be elucidated by examining
equations (3.1), (4.1) and (4.10). Since the present rotary oscillation is one of the
antisymmetric forcings, a mirror image at the forcing phase θ should be reconstructed
at the forcing phase θ + π. In the lock-on state, the mirror image occurs after half
of the vortex shedding period, as shown in figures 6(a) and 6(m). In the tertiary
superharmonic excitation, after half of the vortex shedding period (θ+ 3π), the value
of CL(θ+ 3π) in equation (3.1) is equal to that of −CL(θ). This suggests that the lock-
on exists in the tertiary excitation. On the contrary, in the secondary superharmonic
excitation, the value of CL(θ + 2π) in equation (4.1) is not equal to that of −CL(θ),
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where the lock-on does not exist. After a long time T , a mirror image can be obtained
by the quasi-periodicity in equation (4.10), i.e. T = (2n+ 1)/2Sf = (2m+ 1)/2St0.
Here, n and m are integers. Since St0/Sf is irrational, T is infinite. An exact mirror
image is not obtainable, but it comes close to a mirror image. In the general
nth superharmonic excitation, after half of the vortex shedding period (∆θ = nπ),
CL(θ + nπ) can be expressed as

CL(θ + nπ) = Af cos (θ + nπ− φf) + A1/n cos

(
1

n
(θ + nπ)− 1

n
φ1/n

)
= (−1)nAf cos (θ − φf)− A1/n cos

(
1

n
θ − 1

n
φ1/n

)
. (4.17)

When n is odd, CL(θ + nπ) = −CL(θ), the nth lock-on exists.
In equation (4.1), the response phase of 1

2
Sf is 1

2
θ − 1

2
φ1/2 at the forcing phase θ

in the secondary superharmonic excitation. After one forcing period (∆θ = 2π), the
forcing phase returns to θ. However, if the secondary lock-on occurs, the response
phase is 1

2
θ + π − 1

2
φ1/2. This brings forth the opposite response phase at the same

forcing phase. For the tertiary excitation, the response phase of 1
3
Sf in equation (3.1)

is 1
3
θ + π− 1

3
φ1/3 for the forcing phase θ + 3π. This suggests that the system has the

opposite response phase at the opposite forcing phase. The response phase of (1/n)Sf
is 1

n
θ + π− 1

n
φ1/n at the forcing phase θ + nπ after the 1

2
n forcing periods. When n is

even (odd), the forcing phases are the same (opposite) at the opposite response phase.
Accordingly, if the secondary lock-on exists, the flows are no longer repeated in a π
out-of-phase fashion. The vortex shedding pattern in the upper side is not the same
as in the lower side after half of the shedding period.

5. Conclusions
Detailed numerical analyses have been performed to look into the response to

superharmonic excitation in forced wakes. A direct numerical simulation has been
used to portray the unsteady dynamics of wake flows behind a circular cylinder.
The Reynolds number based on the diameter is Re = 106 and excitation is given by
the rotational oscillation of the circular cylinder. The natural shedding frequency is
St∗0 = 0.168 and the forcing frequency (Sf) varies in the vicinity of 2St∗0 = 0.336 and
3St∗0 = 0.504. The maximum rotation velocity (Ωmax) is in the range 0.10 6 Ωmax 6
0.40.

When the forcing frequency is about three times the natural shedding frequency,
the lock-on is clearly observed. The shedding frequency (St0) coincides with one third
of the forcing frequency, i.e. the 1

3
subharmonic lock-on occurs. The lift coefficient

CL is described in terms of the forcing frequency (Sf) and its subsequent shedding
frequency ( 1

3
Sf). The phase of shedding frequency (φ1/3) changes significantly over a

small change of Sf , which is caused by the phase change of vortex shedding relative
to the cylinder motion. This is similar to the case of primary lock-on. However,
the maximum phase of average CL, i.e. the phase of forcing frequency (φf) is not
substantially changed. In the vorticity contours, three vortices are formed from each
shoulder of the cylinder over three forcing periods. Only one vortex among them is
convected in the far downstream. Once one vortex is created, a low-pressure region
emerges to balance its centrifugal force. The cylinder is then forced to the direction
where the vortex evolves. Between the two larger vortices, a small vortex is generated
in the opposite side, which yields a small decrease of CL.
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In the secondary superharmonic excitation, modulated oscillations are observed,
i.e. the secondary lock-on does not exist. The modulated oscillations are originated
by the phase-variation of the 1

2
Sf frequency (φ1/2). Since the non-phase-locked φ1/2

induces the discrepancy between St0 and 1
2
Sf , the shedding frequencies (St0) are not

concentrated at half of the forcing frequency 1
2
Sf . As Ωmax increases, St0 is gradually

shifted from the natural shedding frequency (St∗0) to lower frequencies. The influence
of Sf on the strength of the shedding vortex is not substantial. Because of the non-
occurrence of the secondary lock-on, the vortex formation and shedding patterns
are variant from cycle to cycle. The near-wakes exhibit the quasi-periodic state in
the secondary superharmonic excitation, which is different from the lock-on in the
tertiary superharmonic excitation.

The non-occurrence of the secondary lock-on can be elucidated by analysing the
relation between the forcing phase and its response phase. When the lock-on exists,
the system should have the opposite response phase at the opposite forcing phase.
The response phase of (1/n)Sf is 1

n
θ+ π− 1

n
φ1/n at the forcing phase θ+ nπ after the

1
2
n forcing periods. When n is even (odd), the forcing phases are the same (opposite)

at the opposite response phase. Accordingly, the nth lock-on exists.
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